Synthese und Charakterisierung von O_2S_2 - und N_2S_2 -Übergangsmetallkomplexen ausgehend von β -Chlor- β -trifluormethylvinylaldehyden

P. Strauch*

Potsdam, Universität, Institut für Anorganische Chemie und Didaktik der Chemie

M. Wecks*, M. Pulst und K. Burger

Leipzig, Universität, Fakultät für Chemie und Mineralogie, Institut für Organische Chemie

D. Greif

Zittau/Görlitz, HTWS, Fachbereich Mathematik/Naturwissenschaften

Eingegangen am 15. März 1999 bzw. 10. Dezember 1999

Keywords: Aldehydes, Copper, EPR spectroscopy, Transition metals, X-ray structure analysis

Synthesis and Characterization of O_2S_2 - and N_2S_2 -Transition Metal Complexes Starting from β -Chloro- β -trifluoromethyl Vinylaldehydes

Abstract. The syntheses of complexes 4 and 5 with O_2S_2 and N_2S_2 - donor atom sets are described as one-step procedures. Their structures were confirmed by NMR, IR, UV/

Cytochrom-C-Oxidase, vorkommend in den Zellen aller aeroben Organismen, ist das entscheidende Enzym für das Elektronentransfersystem, welches die Reduktion von Sauerstoff zu Wasser bewirkt. Die zentrale Einheit des Enzyms wurde als N_2S_2 -Komplex des Kupfers erkannt [1a-c]. Um das Reaktionsverhalten dieses Systems zu studieren, ist es von Interesse, Kupfer(II)komplexe zu synthetisieren, welche den räumlichen Bau und die Ligandenumgebung des Enzyms imitieren [1].

Untersuchungen zur komplexchemischen Reaktivität von β -Mercaptovinylaldehyden und deren Derivaten erfolgten erstmals durch Uhlemann *et al.* [2] und später von Weissenfels *et al.* [3]. Die Synthese von CF₃substituierten O₂S₂-Komplexen gelang erstmals Pulst *et al.* [4].

Synthese der O₂S₂-Komplexe

Die Synthese der β -Mercaptovinylaldehyde **3** erfolgt durch Umsetzung der β -Chlorvinylaldehyde **1**, darstellbar in 3 Reaktionsschritten ausgehend von entsprechenden Benzylcyaniden und Trifluoressigsäureethylester [4, 5], mit Na₂S und anschließender saurer Aufarbeitung. Durch wäßrige Aufarbeitung ist es möglich, die Natriumsalze **2** der β -Mercaptovinylaldehyde darzustellen (siehe Schema 1).

Da bei der Umsetzung der β -Mercaptovinylaldehyde **3** mit Nickel(II)salzen in einer diastereoselektiven Reaktion ein 1,2-Dithiino[4,3-*b*]furanderivat, eine diVIS and MS spectroscopy. One nickel complex **5a** was determined by X-ray structure analysis whereas the Cu^{II} complexes were studied by EPR spectroscopy.

Schema 1 Synthese der β -Mercaptovinylaldehyde

mere Form des β -Mercaptovinylaldehydes **3** gebildet wurde und bei der Umsetzung von **3** mit Kupfer(II)ionen nur ein entsprechendes Disulfid beobachtet werden konnte [6], erwies es sich als notwendig, die Natriummercaptide **2** als Edukte zu verwenden. Die wäßrige, mit Chloroform unterschichtete Mercaptidlösung wurde unter intensivem Rühren mit einer wäßrigen Metall(II)salzlösung versetzt (siehe Schema 2). Der in der Chloroformphase gelöste Komplex, Bis-(1-oxo-O-

Schema 2 Synthese der Komplexe 4a-c

FULL PAPER

2-phenyl-4,4,4-trifluorbut-2-en-3-thiolato-*S*)-metall(II) 4, wurde nach Abziehen des Lösungsmittels im Vakuum säulenchromatographisch gereinigt bzw. umkristallisiert.

Die Verbindung **4a** ist diamagnetisch. Wie an fluorfreien Spezies anhand der Röntgenkristallstruktur gezeigt werden konnte, sind die Liganden in der Koordinationssphäre der planaren Chelate in *cis*-Konfiguration koordiniert [7]. Dies sollte auch bei **4a** der Fall sein. Wie aus dem hochfeldverschobenen Signal des CHO-Restes im ¹H-NMR-Spektrum (8,35 ppm) hervorgeht, gibt es zwischen den Nickel- und Sauerstoffatomen Wechselwirkungen.

Aus der zu niederen Wellenzahlen verschobenen Lage der Aldehydbande in den IR-Spektren von $4\mathbf{a} - \mathbf{c}$ wird die Metall–Sauerstoff-Wechselwirkung ebenfalls deutlich. Das zeigt, daß es sich bei 4 um echte Chelatkomplexe handelt. Eine Koordination über die S-Donoratome kann aufgrund der Thiophilie der eingesetzten Metallionen vorausgesetzt werden, obwohl über die C–S-Bande in den IR-Spektren infolge der Überlagerungen durch die C–F-Banden keine Aussage getroffen werden kann. In den MS-Spektren sind die Molpeaks mit den charakteristischen Isotopenmustern zu finden.

Synthese der N₂S₂-Komplexe

Die Darstellung der N_2S_2 -Komplexe kann einerseits durch Umsetzung der N_2S_2 -Liganden mit Metallen nach Becher *et al.* erfolgen [1, 8]. Andererseits sind die N_2S_2 -Komplexe aus den O_2S_2 -Komplexen durch Umsetzung mit Aminen bzw. Diaminen zugänglich. Alternativ dazu können die N_2S_2 -Verbindungen direkt aus den Mercaptiden **2** gewonnen werden, indem die Komplexierung mit Metallionen und die Reaktion mit entsprechenden Aminen bzw. Diaminen als "Eintopf-Reaktion" durchgeführt wird.

Das *in situ* generierte Mercaptid **2** wurde mit dem entsprechenden Metall(II)salz und Ethylendiamin in einer "Eintopf-Reaktion" zu den entsprechenden Komplexen, (N,N'-Bis-[2-aryl-4,4,4-trifluor-3-thiolato-*S*,*S*'-

Abb. 1 Molekülstruktur von $\{N, N'$ -Bis-[2-(4-bromphenyl)-4,4,4-trifluor-3-thiolato-*S*,*S*'-but-2-en-1-yliden]-1,2-bisimino-N,N'-ethan $\}$ -nickel(II) (**5a**) [10]

but-2-en-1-yliden]-1,2-bisimino-N,N'-ethan)-metall(II) 5**a**-**c**, umgesetzt (siehe Schema 3).

Die Molekülstruktur des Nickel-Komplexes **5a** ist in Abbildung 1 dargestellt. Entsprechend der durch den Liganden vorgeprägten Donoratomsequenz N_2S_2 weist der Komplex eine cisoide Koordination mit merklicher tetraedrischer Verzerrung auf (Diederwinkel der mittleren Chelatringebenen beträgt 19(2)°). Die im ¹H-NMR-Spektrum beobachtete Linienverbreiterung deutet ebenfalls auf eine tetraedrische Verzerrung des Komplexes in Lösung hin. In den beiden, fast ebenen Chelatsechsringen erfolgt eine Bindungsdelokalisation, wie der Vergleich zu den erwarteten Standardbindungslängen [11] zeigt (siehe Tabelle 1).

Abb. 2 Ausschnitt aus der Kristallstruktur von {*N*,*N'*-Bis[2-(4-bromphenyl)-4,4,4-trifluor-3-thiolato-*S*,*S'*-but-2-en-1-yli-den]-1,2-bisimino-*N*,*N'*-ethan}-nickel(II) (**5a**)

In Abbildung 2 ist ein Ausschnitt der Kristallstruktur und der Anordnung der Komplexmoleküle in der Elementarzelle dargestellt. Interessant erscheint dabei die Stabilisierung der Struktur durch schwache intermolekulare Wechselwirkungen zwischen den Fluoratomen der CF₃-Gruppe zu den Wasserstoffatomen der CH₂-Gruppe im Ethylendiaminfragment (Abstand F1–C10 ~ 3,3 Å).

	Bindungslänge in Å	Standardbindungslänge in Å
S1–Ni	2,078	2,187 (S–Ni)
N1–Ni	1,868	1,924 (N–Ni)
S1-C1	1,591	1,81 (C–S)
C1–C2	1,364	1,34 (C=C)
C2–C3	1,432	$1,46 (C[sp^2]-C[sp^2])$
C3-N1	1,289	1.32 (C=N)

Tab. 1 Ausgewählte Bindungslängen von **5a** im Vergleichzu den jeweiligen Standardbindungslängen [11]

In den IR-Spektren von **5** treten die typischen Schwingungen bei 1 630 bzw. 1 610 cm⁻¹ (C=N-Bande) und im Bereich von 1 235–1 120 cm⁻¹ (Banden für die C–F-Schwingungen der CF₃-Gruppen) auf. In den FAB-MS-Spektren ist der jeweilige Molpeak mit entsprechendem Isotopenmuster zu finden.

EPR-Untersuchungen

Bis-(1-oxo-O-2-[4-chlorphenyl]-4,4,4-trifluorbut-2-en-3-thiolato-S)-kupfer(II) (**4b**)

Das bei Raumtemperatur aufgenommene, isotrope EPR-Spektrum einer Lösung von **4b** in CHCl₃ zeigt das für Cu^{II} typische Hyperfeinstruktur-Linienquartett aufgrund der Elektronen-Spin/Kern-Spin-Kopplung (S = 1/2, I^{Cu} = 3/2). Das in Abbildung 3 dargestellte Spektrum ist mit dem folgenden vereinfachten Spin-Hamilton-Operator beschreibbar:

$$H_{\rm Sp} = g_0 \,\mu_{\rm B} \, B_0 \cdot S + S \cdot a_0^{\rm Cu} \cdot I^{\rm Cu}.$$

Der erste Term (Elektron-Zeeman-Term) beschreibt die Wechselwirkung des ungepaarten Elektrons mit dem Magnetfeld B_0 und der zweite Term (Hyperfeinstruktur-Term) die Wechselwirkung des ungepaarten Elektrons mit dem Kernspin des Cu-Kerns (I^{Cu}).

Der ermittelte Parametersatz ($g_0 = 2,072 \pm 0.002$, $a_0^{\text{Cu}} = 78,0 \pm 0.5 \times 10^{-4} \text{ cm}^{-1}$) steht mit der angenommenen quadratisch-planaren CuS₂O₂-Koordination in guter Übereinstimmung. Aufgrund der großen Linienbreite ist die zu erwartende ⁶³Cu/⁶⁵Cu-Isotopenaufspaltung (⁶³Cu: I = 3/2, natürliche Häufigkeit 69,2%; ⁶⁵Cu: I = 3/2, natürliche Häufigkeit 30.8%) nicht aufgelöst. Über die Art der vorliegenden Konfiguration (*cis* bzw. *trans* bezüglich der Donoratomanordnung) kann anhand der vorliegenden Daten keine Aussage getroffen werden, da entsprechende Vergleichsdaten fehlen.

Das Spektrum ist fragmentarisch vom Spektrum einer weiteren Cu^{II}-Spezies überlagert (die zugehörigen Signale sind in Abbildung 3 mit "*" gekennzeichnet). Die Identität dieser zweiten Spezies läßt sich aufgrund des nicht vollständig auswertbaren Spektrum nicht eindeutig zuordnen. Die vergleichbare Kopplungskonstante $(a_0^{Cu} = 76, 0 \pm {}^{2,0} \cdot 10^{-4} \text{ cm}^{-1})$ läßt aber das Isomere mit der alternativen Konfiguration (*cis/trans*) vermuten.

Abb. 3 Experimentelles und simuliertes Raumtemperatur-EPR-Spektrum von Bis-(1-oxo-*O*-2-[4-chlorphenyl]-4,4,4trifluorbut-2-en-3-thiolato-*S*)-kupfer(II) (**4b**) (CHCl₃)

(N,N'-Bis-[2-{4-bromphenyl}-4,4,4-trifluor-3-thiolato-S,S'-but-2-en-1-yliden]-1,2-bisimino-N,N'-ethan)kupfer(II) (**5b**)

Die Verbindung konnte nur anhand ihres EPR-Spektrums nachgewiesen werden. Das bei Raumtemperatur aufgenommene Spektrum läßt erwartungsgemäß das für Cu^{II} typische Linienquartett erkennen. Die große Linienbreite verhindert auch bei diesem Spektrum die Auflösung der ⁶³Cu/⁶⁵Cu-Isotopenaufspaltung.

Die Hochfeldlinie des Cu^{II}-Spektrums läßt eine zusätzliche Strukturierung erkennen, die auf die Wechselwirkung des ungepaarten Elektrons mit dem Kernspin (I = 1) von zwei äquivalenten Stickstoffkernen zurückzuführen ist. Entsprechend der Beziehung (2nI + 1) ist hier ein zusätzliches Linienquintett zu erwarten, was zu einer Strukturierung jeder Cu-Hyperfeinstrukturlinie führt, wie in der Spektrensimulation [12] in Abbildung 4 zu erkennen ist. Aufgrund der Linienverbreiterung ist diese im experimentellen Spektrum jedoch nur bei der Hochfeldlinie andeutungsweise aufgelöst.

Der folgende, zur Beschreibung des Spektrums geeignete, vereinfachte Spin-Hamilton-Operator muß hier um ein weiteres Hyperfeinstrukturglied erweitert werden, das die Wechselwirkung des ungepaarten Elektrons mit dem Kernspin der Stickstoffkerne zum Ausdruck bringt:

$$H_{\rm Sp} = g_0 \,\mu_{\rm B} \,B_0 \cdot S + S \cdot a_0^{\rm Cu} \cdot I^{\rm Cu} + S \cdot a_0^{\rm N} \cdot I^{\rm N}$$

Der für **5b** erhaltene Parametersatz des isotropen Spektrums ($g_0 = 2,043 \pm 0.002$ und die Hyperfeinstruktur-Kopplungskonstanten $a_0^{\text{Cu}} = 82,6 \pm 0.5$ bzw. $a_0^{\text{N}} = 48,6 \pm 0.5 \cdot 10^{-4} \text{ cm}^{-1}$) sprechen eindeutig für die erwartete CuS_2N_2 -Koordination. Die Isolierung des Kupfer(II)-Komplexes **5b** in reiner Form gelang nicht, da der Komplex einer raschen Reduktion seines Kupfer(II)-Koordinationszentrums zum entsprechenden, diamagnetischen Kupfer(I)-Komplex unterliegt. Berücksichtigt man die tetraedrische Verzerrung des analogen Nickel-Komplexes **5a**, so ist die Redoxreaktion für den Kupfer-Komplex nicht überraschend. Ausdruck dafür ist auch die beobachtete Abweichung der Elementaranalyse dieses Komplexes. Das mäßige Signal–Rausch-Verhältnis in den EPR-Spektren spricht ebenfalls nur für eine geringe Konzentration der beobachteten Kupfer(II)-Komponente.

Beim genaueren Betrachten des erhaltenen EPR-Spektrums (Abb. 4) ist zu erkennen, daß das Spektrum von einem weiteren, nicht strukturierten Signal ($g \sim 2,0$) überlagert ist, was auf paramagnetische Folgeprodukte einer möglichen intramolekularen Redoxreaktion hindeutet.

Abb. 4 Experimentelles und simuliertes Raumtemperatur-EPR-Spektrum von $\{N, N'$ -Bis-[2-(4-bromphenyl)-4,4,4-trifluor-3-thiolate-*S*,*S'*-but-2-en-1-yliden]-1,2-bisimino-*N*,*N'*ethan}-kupfer(II) (**5b**) (CHCl₃)

Die Autoren danken der Deutschen Forschungsgemeinschaft und dem Fond der Chemischen Industrie für die finanzielle Unterstützung sowie Herrn Prof. Dr. J. Sieler für die Erstellung des Röntgendatensatzes und die Strukturlösung.

Beschreibung der Versuche

Die angegebenen Schmelzpunkte wurden auf einem Mikroheiztisch nach Boëttus bestimmt und stellen korrigierte Werte dar. Elementaranalysen wurden mit einem "CHNOS-Simultan-Bestimmung Elementar Vario EL" (Firma Heraeus) gemessen. Die NMR-Spektren wurden mit den folgenden Geräten aufgenommen: Varian Gemini 200 (Firma Varian, ¹H-NMR: 199,96 MHz, ¹³C-NMR: 50,29 MHz) und Varian Gemini 2000 (Firma Varian, ¹⁹F-NMR: 188,21 MHz). Die NMR-Verschiebungen sind in ppm angegeben und für ¹H- und ¹³C-Spektren auf das Lösungsmittelrestsignal referenziert; für die ¹⁹F-Spektren wurde TFE als externer Standard verwendet. Signale, die tieffeldverschoben zum Standard erscheinen, sind mit positivem Vorzeichen versehen. Die IR-Spektren wurden mit den Geräten ATI Mattson (Firma Unicam) und Specord M 80 (Firma Carl-Zeiss-Jena) aufgenommen. Die Massenspektren wurden mit den Geräten VG 12-250 (Firma Masslab) bzw. MAT 212 (Firma Masslab) bei 70eV unter direkter Probenzufuhr gemessen. Die Massenzahlen der Fragmentionen beziehen sich immer auf die Isotope mit der größten natürlichen Häufigkeit. Die FAB-MS-Spektren wurde mit dem Fisons VG Autospec FAB-Massenspektrometer (Cäsium-Primärionenquelle; 30 keV; 1 µA Primärstrom) aufgenommen. Die Aufnahme der UV/VIS-Spektren erfolgte an einem Spektralphotometer DU 650 (Firma Beckmann). Die EPR-Untersuchungen wurden an einem EPR-Spektrometer vom Typ ESP 300 E (Firma Bruker) im X-Band (f = 9,5 MHz) bei Raumtemperatur durchgeführt. Der Röntgendatensatzes wurde auf einem Stoe STADI 4 Vierkreisdiffraktometer (Firma Huber) erstellt. Die röntgenographischen Angaben und die Koordinaten der Nichtwasserstoffatome sind in den Tabellen 2 und 3 zusammengefaßt. Bei der säulenchromatographischen Trennung der Produkte wurde Kieselgel 60 der Fa. Merck mit einer Korngröße 63-200 µm eingesetzt. Ausgangsverbindungen wurden nach den angegeben Literaturvorschriften dargestellt oder käuflich erworben. Die verwendeten Lösungsmittel wurden in gereinigter und getrockneter Form eingesetzt.

Synthese der Na-Salze der β -Mercapto- β -perfluoralkylvinylaldehyde 2a – c

12 mmol (2,88 g) Na₂S · 9H₂O werden in 60 ml Methanol gelöst und erhitzt. Zur siedenden Lösung werden unter Rühren 10 mmol des entsprechenden β -Chlor- β -perfluoralkylacroleins **1a**-**c** zugegeben. Die siedende Lösung wird 1 h gerührt und danach das Methanol abgezogen. Der Rückstand wird mit Wasser aufgenommen und filtriert. Das entstandene Natriummercaptid **2** befindet sich in der wäßrigen Phase und kann ohne weitere Reinigung anschließenden Umsetzungen zugeführt werden.

Synthese der O₂S₂-Komplexe 4 (Allgemeine Arbeitsvorschrift)

Die wäßrige Lösung des Natriummercaptids 2 (10 mmol) wird mit Chloroform unterschichtet und unter intensivem Rühren mit 5 mmol des entsprechenden Übergangsmetallsalzes, gelöst in 10 ml Wasser, versetzt. Nach fünfminütigem Rühren bei Raumtemperatur trennt man die Chloroformphase ab, wäscht mit Wasser und trocknet mit Na₂SO₄. Das CHCl₃ wird im Vakuum abgezogen und der Rückstand umkristallisiert bzw. säulenchromatographisch gereinigt.

Bis-(1-oxo-O-2-phenyl-4,4,4-trifluorbut-2-en-3-thiolato-S)nickel(II) (**4a**)

rotbraune Kristalle, Ausb. 75% (1,9 g), *Fp*. 223–225 °C (CH₃CN). – IR (KBr) ν /cm⁻¹ = 1564 [s, CHO]; 1226, 1145, 1117 [s, C–F]; 703 [m, Phenyl]. – ¹H – NMR (CDCl₃): 7,21–7,25 [m; 4H; C<u>H</u>–Phenyl]; 7,37–7,43 [m; 6H; CH–Phenyl]; 8,35 [s; 2H; C<u>HO]</u>. – ¹³C – NMR (CDCl₃): 76,6 [q; C–CF₃;

$$\label{eq:2} \begin{split} ^{2}J_{\text{C,F}} &= 32,5 \text{ Hz}]; \ 119,8 \ [q; \ \text{CF}_3; \ ^{1}J_{\text{C,F}} &= 280,0 \ \text{Hz}]; \ 129,0 \\ [\text{C3,5}-\text{Phenyl}]; \ 129,1 \ [\text{C4}-\text{Phenyl}]; \ 130,5 \ [q; \ \text{C2,6}-\text{Phenyl}]; \\ ^{5}J_{\text{C,F}} &= 1,5 \ \text{Hz}]; \ 133,5 \ [s \ \{br\}; \ \text{C2}-\text{Buten}]; \ 136,2 \ [\text{C1}-\text{Phenyl}]; \\ ^{5}J_{\text{C,F}} &= 1,5 \ \text{Hz}]; \ 133,5 \ [s \ \{br\}; \ \text{C2}-\text{Buten}]; \ 136,2 \ [\text{C1}-\text{Phenyl}]; \\ ^{13}I_{\text{C,F}} &= 1,5 \ \text{Hz}]; \ 133,5 \ [s \ \{br\}; \ \text{C2}-\text{Buten}]; \ 136,2 \ [\text{C1}-\text{Phenyl}]; \\ ^{13}I_{\text{C,F}} &= 1,5 \ \text{Hz}]; \ 133,5 \ [s \ \{br\}; \ \text{C2}-\text{Buten}]; \ 136,2 \ [\text{C1}-\text{Phenyl}]; \\ ^{13}I_{\text{C,F}} &= 1,5 \ \text{Hz}]; \ 133,5 \ [s \ \{br\}; \ \text{C2}-\text{Buten}]; \ 136,2 \ [\text{C1}-\text{Phenyl}]; \\ ^{13}I_{\text{C,F}} &= 1,5 \ \text{Hz}]; \ 133,5 \ [s \ \{br\}; \ \text{C2}-\text{Buten}]; \ 136,2 \ [\text{C1}-\text{Phenyl}]; \\ ^{13}I_{\text{C,F}} &= 1,5 \ \text{Hz}]; \ 133,5 \ [s \ \{br\}; \ \text{C2}-\text{Buten}]; \ 136,2 \ [\text{C1}-\text{Phenyl}]; \\ ^{13}I_{\text{C,F}} &= 1,5 \ \text{Hz}]; \ 137,5 \ [s \ \{br\}; \ \text{C2}-\text{Buten}]; \ 136,2 \ [s \ \text{C1}-\text{Phenyl}]; \\ ^{13}I_{\text{C,F}} &= 1,5 \ \text{Hz}]; \ 137,5 \ [s \ \{br\}; \ \text{C2}-\text{Buten}]; \ 136,2 \ [s \ \text{C1}-\text{Phenyl}]; \\ ^{13}I_{\text{C,F}} &= 1,5 \ \text{Hz}]; \ 137,5 \ [s \ \text{C1}-\text{Phenyl}]; \ 137,5 \ [s \ \text{C1}-\text{Phenyl}]; \ 137,5 \ \ \text{C2}-\text{Hz}]; \ 138,5 \ \ \text{C1}-\text{Hz}]; \ 138,5 \ \ \text{C1}$$

Bis-(1-oxo-O-2-[4-chlorphenyl]-4,4,4-trifluorbut-2-en-3thiolato-S)-kupfer(II) (**4b**)

braune Kristalle, Ausb. 80% (2,4 g), *Fp.* 180–182 °C (CH₃CN). – IR (KBr) $\nu/cm^{-1} = 1653$ [s, CHO]; 1212, 1177, 1130 [s, C–F]; 812 [m, Phenyl]. – MS *m/e* (%): 597 [³⁷Cl,³⁷Cl] M^{+.} (1); 595 [³⁵Cl,³⁷Cl] M^{+.} (2); 593 [³⁵Cl,³⁵Cl] M^{+.} (1); 498 M–CuS (14); 296 C₁₀H₅ClF₃OCu⁺ (14); 281 C₉H₅ClF₂SCu⁺ (30); 265 C₁₀H₅ClF₃OS⁺ (75); 139 C₇H₄ClO⁺ (100). – UV/ VIS (CHCl₃) λ_{max} /nm (lg ε): 398 (3,917). C₂₀H₁₀Cl₂F₆O₂S₂Cu Ber.: C 40,38 H 1,69 (594,86) Gef.: C 40,28 H 1,34.

Bis-(1-oxo-O-2-phenyl-4,4,4-trifluorbut-2-en-3-thiolato-S)kobalt(II) (**4c**)

rotbraune Kristalle, Ausb. 65% (1,7 g), *Fp*. 201–203 °C (CH₃CN). – IR (KBr) $\nu/cm^{-1} = 1586$ [s, CHO]; 1217, 1192, 1141 [s, C–F]; 703 [m, Phenyl]. – MS *m/e* (%): 521 M^{+.} (100); 430 M–CoS (14); 291 C₁₀H₇F₃OSCo⁺ (74); 231 C₁₀H₆F₃OS⁺ (75); 183 C₁₀H₆F₃⁺ (68); 151 C₉H₅F₂⁺ (88). – UV/VIS (CHCl₃) λ_{max}/mm (lg ε): 416 (3,803). C₂₀H₁₂F₆O₂S₂Co Ber.: C 46,08 H 2,32 (521,36) Gef.: C 46,05 H 2,43.

Synthese der N₂S₂-Komplexe 5 (Allgemeine Arbeitsvorschrift)

Die entsprechend der allgemeinen Arbeitsvorschrift zur Synthese des O_2S_2 -Komplexe **4** hergestellte Chloroformphase wird abgetrennt, mit 5 mmol (0,30 g) Ethylendiamin versetzt und für 2 h zum Sieden erhitzt. Die Reaktionsmischung wird auf Wasser gegossen und mit Chloroform extrahiert. Die organische Phase trocknet man mit Na₂SO₄. Das CHCl₃ wird im Vakuum abgezogen und der Rückstand umkristallisiert.

{*N*,*N'*-*Bis*-[2-(4-bromphenyl)-4,4,4-trifluor-3-thiolato-S,S'but-2-en-1-yliden]-1,2-bisimino-*N*,*N'*-ethan}-nickel(II) (**5a**) rotbraune Kristalle, Ausb. 65% (2,3 g), *Fp*. 343–345 °C (CH₃CN). – IR (KBr) ν /cm⁻¹= 1 630 [m, C=N]; 1 235, 1 180, 1 120 [s, C–F]. – MS *m/e* (%): FAB 702 M^{+.} mit entsprechendem Isotopenmuster. – UV/VIS (DMSO) λ_{max} /nm (lg ε): 499 (3,30).

$C_{22}H_{14}Br_{2}F_{6}N_{2}S_{2}Ni$	Ber.: C 37,58	H 2,01	N 3,98
(702,98)	Gef.: C 38,64	H 2,31	N 4,32.

{*N*,*N*'-*Bis*-[2-(4-bromphenyl)-4,4,4-trifluor-3-thiolato-S,S'-but-2-en-1-yliden]-1,2-bisimino-*N*,*N*'-ethan}-kupfer(*II*) (**5b**)

rotbraune Kristalle, Ausb. 63% (2,2 g), *Fp*. 258–260 °C (CH₃CN). – IR (KBr) ν/cm^{-1} = 1 630 [m, C=N]; 1 230, 1 180, 1125 [s, C–F]. – MS *m/e* (%): FAB 707 M^{+.} mit entsprechendem Isotopenmuster. – UV/VIS (DMSO) $\lambda_{\text{max}}/\text{nm}$ (lg ε): 402,5 (3,74).

$C_{22}H_{14}Br_2F_6N_2S_2Cu$	Ber.: C 37,33	н 1,99	N 3,96
(707,81)	Gef.: C 38,51	H 2,31	N 4,49.

Tab. 2	Röntgenogra	phische Angaben	von	5a
	1 1			

Verbindung 5a	
Summenformel	$C_{22}H_{14}Br_2F_6N_2NiS_2$
Formelgewicht	703,00
Meßtemperatur	293(2)
Wellenlänge [Å] (MoK $_{\alpha}$)	0,71073
Kristallsystem/Raumgruppe	monoklin, C2/c
Zelle: a [Å]	22,948(2)
b [Å]	7,9839(8)
c [Å]	13,1258(14)
α [°]	90
β [°]	91,166(2)
γ[°]	90
V [Å ³]	2404,3(4)
Z	4
ber. Dichte [g/cm ³]	1,942
Absorptionskoeffzient [mm ⁻¹]	4,366
Meßbereich (2 Θ) [°]	2 - 26
Anzahl der gemessenen Reflexe	4555
Anzahl der unabhängigen Reflexe	2119 [$\mathbf{R}(int) = 0,0350$]
Anzahl der beobachteten Reflexe	1538
$[> 2\sigma(1)]$	
Zahl der verfeinerten Parameter	2114/0/188
Gütefaktor	1,035
R ₁	0,0626
wR ₂	0,1656
Restelektronendichte	$0,718 \text{ und} - 1,186 \text{ e } \text{A}^{-3}$
Strukturlösung	SHELXS-86
C	(direkte Methoden) [13]
Strukturverfeinerung	SHELXL-93 [14]
Kristallgröße [mm]	$0,28 \times 0,25 \times 0,24$
Absorptionskorrektur	SADABS
Absorptionskoeffizient [mm]	4,366
Extinktionskoeffizient	0,0011(5)

Tab. 3 Atomkoordinaten [$\cdot 10^4$] und äquivalente isotrope Auslenkungsparameter [$\mathring{A}^2 \cdot 10^3$]

		Х	У	z U(eq)
Br(1)	2115(1)	1943(1)	12510(1)	84(1)
Ni(1)	5000	471(1)	7500	43(1)
S(1)	4705(1)	-1551(4)	8342(2)	100(1)
N(1)	4604(2)	2174(6)	8173(4)	53(1)
C(1)	4271(3)	-948(8)	9197(5)	54(2)
C(2)	4046(3)	603(8)	9416(5)	51(1)
C(3)	4231(3)	2060(10)	8891(5)	60(2)
C(4)	3580(3)	884(8)	10174(4)	51(1)
C(5)	3688(3)	1812(10)	11050(5)	66(2)
C(6)	3257(3)	2150(10)	11735(6)	66(2)
C(7)	2702(3)	1520(9)	11542(5)	57(2)
C(8)	2583(3)	630(10)	10690(5)	64(2)
C(9)	3015(3)	328(9)	10006(5)	59(2)
C(10)	4702(4)	3836(9)	7703(6)	74(2)
C(11)	4112(4)	-2480(10)	9783(7)	73(2)
F(1)	3936(3)	-2189(6)	10728(4)	98(2)
F(2)	4543(3)	-3566(6)	9893(4)	101(2)
F(3)	3692(3)	-3333(7)	9315(6)	138(3)

Symmetrietransformation zur Erzeugung von äquivalenten Atomen: -x+1; y; -z+1,5; U(eq) ist definiert als ein Drittel der Spur des orthogonalisierten U_{ii}-Tensors.

{*N*,*N*'-*Bis*-[2-(4-bromphenyl)-4,4,4-trifluor-3-thiolato-S,S'but-2-en-1-yliden]-1,2-bisimino-*N*,*N*'-ethan}-kobalt(II) (**5c**)

rotbraune Kristalle, Ausb. 58% (2,0 g), *Fp*. 337–339 °C (CH₃CN). – IR (KBr) ν /cm⁻¹ = 1 610 [m, C=N]; 1 230, 1175, 1125 [s, C–F]. – MS *m/e* (%): FAB 703 M^{+.} mit entsprechendem Isotopenmuster. – UV/VIS (DMSO) λ_{max} /nm (lg ε): 456 (3,62).

$C_{22}H_{14}Br_2F_6N_2S_2Co$	Ber.: C 37,57	H 2,01	N 3,98
(703,20)	Gef.: C 38,39	H 2,45	N 4,45.

Literatur

- a) S. Iwata, C. Ostermeier, B. Ludwig, H. Michel, Nature 1995, 376, 660; b) T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shinzawa-Itoh, R. Nakashima, R. Yaono, S. Yoshikawa, Science 1995, 269, 1069; c) H. Toftlund, J. Becher, P. H. Olesen, J. Z. Pedersen, Isr. J. Chem. 1985, 25, 56; d) J. Becher, H. Toftlund, P. H. Olesen, J. Chem. Soc., Chem. Commun., 1983, 740; e) J. Becher, H. Toftlund, P. H. Olesen, H. Nissen, Inorg. Chim. Acta 1985, 103, 167
- [2] E. Uhlemann, G. Hinsche, H. Braunschweig, M. Weißenfels, Z. anorg. allg. Chem. **1970**, *337*, 321
- [3] a) M. Pulst, M. Weißenfels, L. Beyer, Z. Chem. 1973, 13, 287; b) M. Pulst, L. Beyer, M. Weißenfels, J. prakt. Chem. 1982, 324, 292
- [4] a) M. Weißenfels, M. Pulst, D. Greif, R. Hoffmann, A. Laurent, P. Mison, Z. Chem. **1988**, 28, 247; b) R. Hoffmann, D. Greif, M. Pulst, M. Weißenfels, A. Laurent, Z. Chem. **1990**, 30, 247
- [5] a) G. M. Alvernhe, B. Langlois, A. Laurent, I. LeDrean, A. Selmi, M. Weißenfels, Tetrahedron Lett. **1991**, *32*, 247;
 b) D. Greif, U. Eilitz, M. Pulst, D. Riedel, M. Wecks, J. Fluorine Chem. **1999**, *94*, 91
- [6] M. Wecks, Promotion, Universität Leipzig 1999

- [7] L. Kutschabsky, Z. anorg. allg. Chem. 1974, 404, 239
- [8] M. Pulst, D. Greif, E. Kleinpeter, Z. Chem. 1988, 28, 345
- [9] D. Riedel, Promotion, Universität Leipzig 1995
- [10] L. Zsolnai; ZORTEP-Programm zur Moleküldarstellung, Universität Heidelberg 1995
- [11] a) Lehrwerk Chemie, AB 1/2, Autorenkollektiv, 5. Aufl., Deutscher Verlag für Grundstoffindustrie Leipzig 1990;
 b) J. March, Adv. Org. Chem., McGraw-Hill Tokyo 1977 (2. Ed.); c) A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson, R. Taylor; J. Chem. Soc., Dalton Trans. 1989, S1
- [12] EPR-Spektrensimulationsprogramm "Simfonia", Bruker, 1997
- [13] G. M. Sheldrick; SHELXS-86 Program for the Solution of Crystal Structures, Göttingen 1986; Acta Cryst. A, 1990, 46, 467
- [14] G. M. Sheldrick; SHELXL-93 Program for the Refinement of Crystal Structures, Göttingen 1993

Korrespondenzanschriften: Prof. Dr. Peter Strauch Universität Potsdam Institut für Anorganische Chemie und Didaktik der Chemie Postfach 601553 D-14415 Potsdam e-Mail: ps@chem..uni-potsdam.de

Dr. Mike Wecks Universität Leipzig Fakultät für Chemie und Mineralogie Institut für Organische Chemie Johannisallee 29 D-04103 Leipzig e-Mail: wecks@organik.chemie.uni-leipzig.de